SOME PROPERTIES OF LP-SASAKIAN MANIFOLDS EQUIPPED WITH m−PROJECTIVE CURVATURE TENSOR (COMMUNICATED BY UDAY CHAND DE)
نویسنده
چکیده
In the present paper we studied the properties of them−projective curvature tensor in LP-Sasakian, Einstein LP-Sasakian and η−Einstein LPSasakian manifolds.
منابع مشابه
SOME PROPERTIES OF m−PROJECTIVE CURVATURE TENSOR IN KENMOTSU MANIFOLDS (COMMUNICATED BY PROFESSOR U. C. DE)
In this paper, some properties of m−projective curvature tensor in Kenmotsu manifolds are studied.
متن کاملAlmost Contact Metric Manifolds Admitting Semi-symmetric Non-metric Connection (communicated by Uday Chand De)
In this paper, we study some geometrical properties of almost contact metric manifolds equipped with semi-symmetric non-metric connection. In the last, properties of group manifold are given.
متن کاملOn Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α
The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M ...
متن کاملSome Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection
We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is an η-Einstein manifold.We also investigate some properties of curvature tensor, conformal curvature tensor,W2curvature tensor, concircular curvature tensor, projective curvature tensor, and pseudo-projective curvature tensor...
متن کاملOn - Curvature Tensor in Lp-sasakian Manifolds
Some results on the properties of T -flat, quasiT -flat, T -flat, T -flat, T -semi-symmetric, T Ricci recurrent and T - -recurrent LP-Sasakian manifolds are obtained. It is also proved that an LP-Sasakian manifold satisfying the condition T . 0 S is an -Einstein manifold. MSC 2000. 53C15, 53C25, 53C50, 53D15.
متن کامل